Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Multimedia systems ; : 1-25, 2023.
Article in English | EuropePMC | ID: covidwho-2261694

ABSTRACT

The World Health Organization (WHO) declared a pandemic in response to the coronavirus COVID-19 in 2020, which resulted in numerous deaths worldwide. Although the disease appears to have lost its impact, millions of people have been affected by this virus, and new infections still occur. Identifying COVID-19 requires a reverse transcription-polymerase chain reaction test (RT-PCR) or analysis of medical data. Due to the high cost and time required to scan and analyze medical data, researchers are focusing on using automated computer-aided methods. This review examines the applications of deep learning (DL) and machine learning (ML) in detecting COVID-19 using medical data such as CT scans, X-rays, cough sounds, MRIs, ultrasound, and clinical markers. First, the data preprocessing, the features used, and the current COVID-19 detection methods are divided into two subsections, and the studies are discussed. Second, the reported publicly available datasets, their characteristics, and the potential comparison materials mentioned in the literature are presented. Third, a comprehensive comparison is made by contrasting the similar and different aspects of the studies. Finally, the results, gaps, and limitations are summarized to stimulate the improvement of COVID-19 detection methods, and the study concludes by listing some future research directions for COVID-19 classification.

2.
Multimed Syst ; 29(3): 1603-1627, 2023.
Article in English | MEDLINE | ID: covidwho-2261693

ABSTRACT

The World Health Organization (WHO) declared a pandemic in response to the coronavirus COVID-19 in 2020, which resulted in numerous deaths worldwide. Although the disease appears to have lost its impact, millions of people have been affected by this virus, and new infections still occur. Identifying COVID-19 requires a reverse transcription-polymerase chain reaction test (RT-PCR) or analysis of medical data. Due to the high cost and time required to scan and analyze medical data, researchers are focusing on using automated computer-aided methods. This review examines the applications of deep learning (DL) and machine learning (ML) in detecting COVID-19 using medical data such as CT scans, X-rays, cough sounds, MRIs, ultrasound, and clinical markers. First, the data preprocessing, the features used, and the current COVID-19 detection methods are divided into two subsections, and the studies are discussed. Second, the reported publicly available datasets, their characteristics, and the potential comparison materials mentioned in the literature are presented. Third, a comprehensive comparison is made by contrasting the similar and different aspects of the studies. Finally, the results, gaps, and limitations are summarized to stimulate the improvement of COVID-19 detection methods, and the study concludes by listing some future research directions for COVID-19 classification.

3.
Soft comput ; 27(9): 5521-5535, 2023.
Article in English | MEDLINE | ID: covidwho-2242061

ABSTRACT

COVID-19 is a virus that causes upper respiratory tract and lung infections. The number of cases and deaths increased daily during the pandemic. Once it is vital to diagnose such a disease in a timely manner, the researchers have focused on computer-aided diagnosis systems. Chest X-rays have helped monitor various lung diseases consisting COVID-19. In this study, we proposed a deep transfer learning approach with novel fine-tuning mechanisms to classify COVID-19 from chest X-ray images. We presented one classical and two new fine-tuning mechanisms to increase the model's performance. Two publicly available databases were combined and used for the study, which included 3616 COVID-19 and 1576 normal (healthy) and 4265 pneumonia X-ray images. The models achieved average accuracy rates of 95.62%, 96.10%, and 97.61%, respectively, for 3-class cases with fivefold cross-validation. Numerical results show that the third model reduced 81.92% of the total fine-tuning operations and achieved better results. The proposed approach is quite efficient compared with other state-of-the-art methods of detecting COVID-19.

4.
Soft Computing ; : 1-15, 2023.
Article in English | EuropePMC | ID: covidwho-2168709

ABSTRACT

COVID-19 is a virus that causes upper respiratory tract and lung infections. The number of cases and deaths increased daily during the pandemic. Once it is vital to diagnose such a disease in a timely manner, the researchers have focused on computer-aided diagnosis systems. Chest X-rays have helped monitor various lung diseases consisting COVID-19. In this study, we proposed a deep transfer learning approach with novel fine-tuning mechanisms to classify COVID-19 from chest X-ray images. We presented one classical and two new fine-tuning mechanisms to increase the model's performance. Two publicly available databases were combined and used for the study, which included 3616 COVID-19 and 1576 normal (healthy) and 4265 pneumonia X-ray images. The models achieved average accuracy rates of 95.62%, 96.10%, and 97.61%, respectively, for 3-class cases with fivefold cross-validation. Numerical results show that the third model reduced 81.92% of the total fine-tuning operations and achieved better results. The proposed approach is quite efficient compared with other state-of-the-art methods of detecting COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL